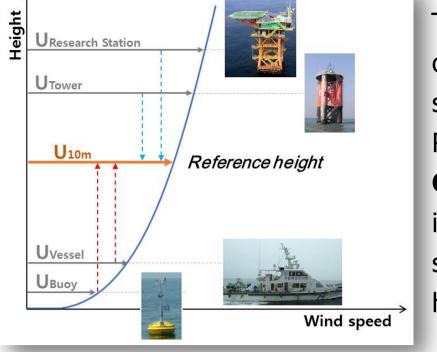
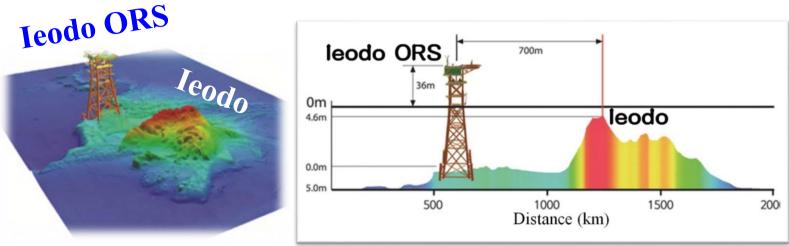
Investigating adjustment of wind profile formulas to a reference height using observation records at the Ieodo Ocean Research Station


<u>Do-Seong Byun¹</u> (dsbyun@korea.kr), Jooyoung Lee¹, Hyowon Kim¹ and Eunil Lee¹ ¹Korea Hydrographic and Oceanographic Agency (KHOA), Busan, Republic of Korea

Introduction

Korea Hydrographic

and Oceanographic Agency


Conventionally, winds measured at various heights at sea are adjusted to a 10-m reference height. These converted data are used to calculate wind stress and heat flux at the sea surface and to conduct validation and verification of winds simulated from meteorological models and measured from spaceborne scatterometer.

This is a preliminary study adjustment of wind on speeds measured at the Roof Deck of the Ieodo **Ocean Research Station** in order to service wind speeds at a 10-m reference height.

The **Ieodo Ocean Research Station** (Ieodo ORS) is situated on submarine rock called **Ieodo** in the East China Sea. The Korea Hydrographic and Oceanographic 47% Agency (KHOA) has been running these ORSs since 2007. The KHOA has been conducting a program of "IORS field trip" since 2014 in order to further enhance it to be an international observation station.

Ieodo Ocean Research Station

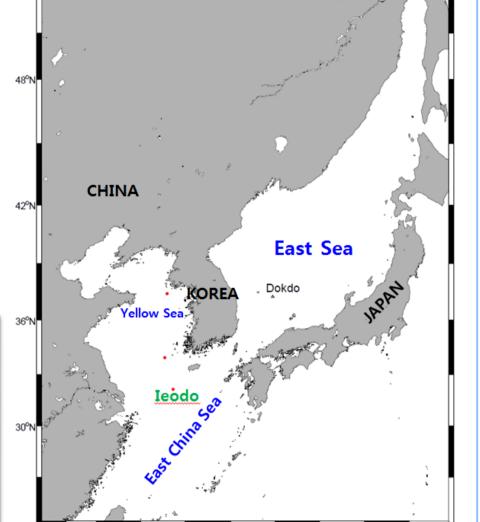
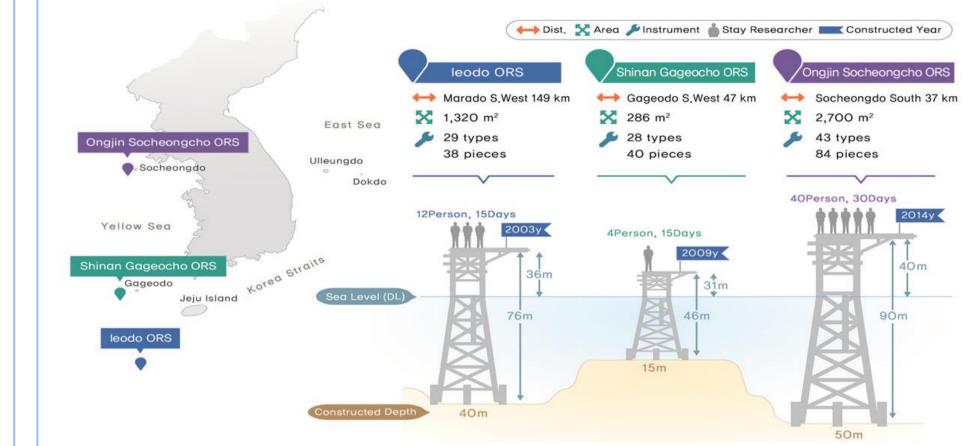
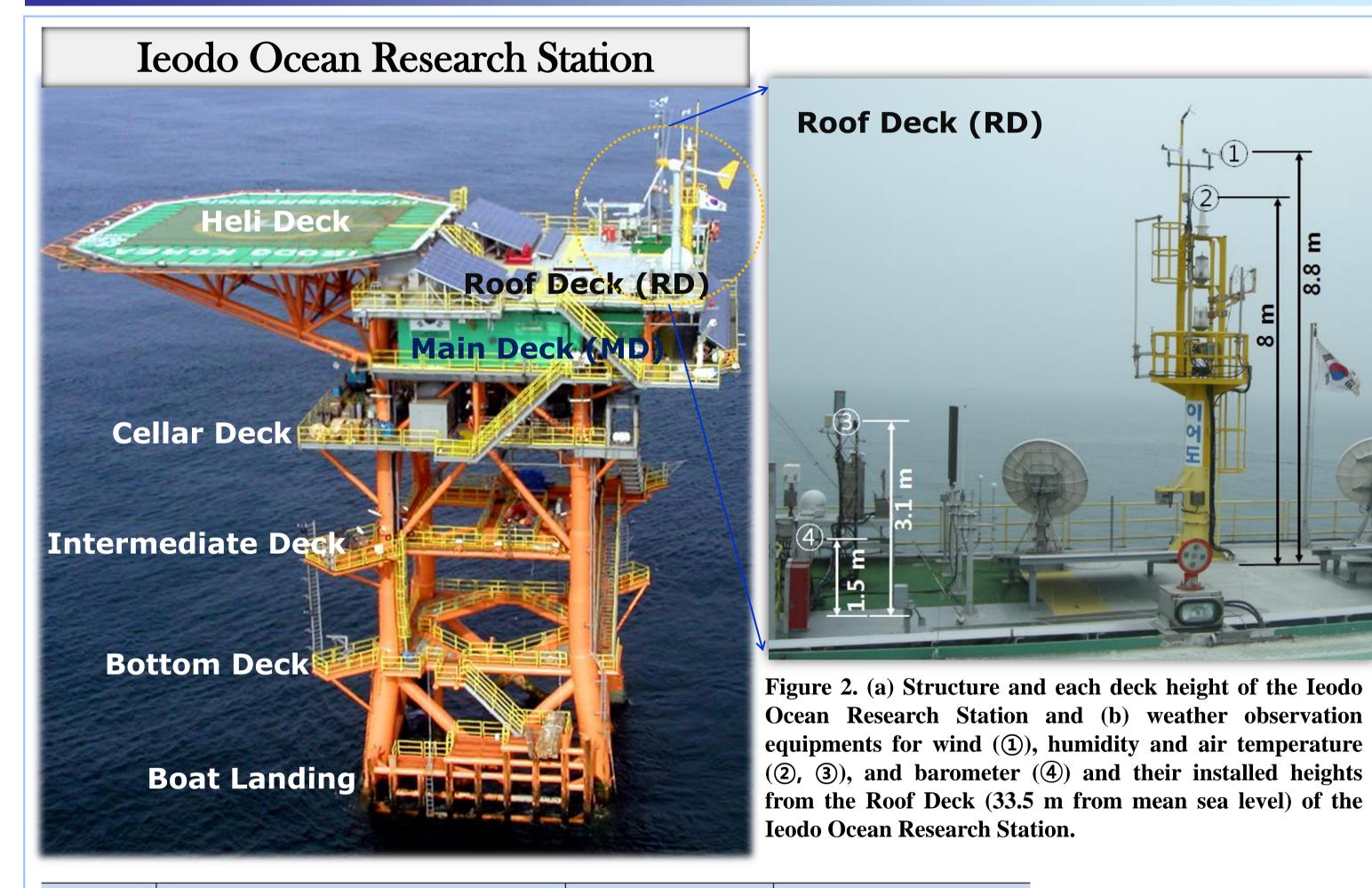
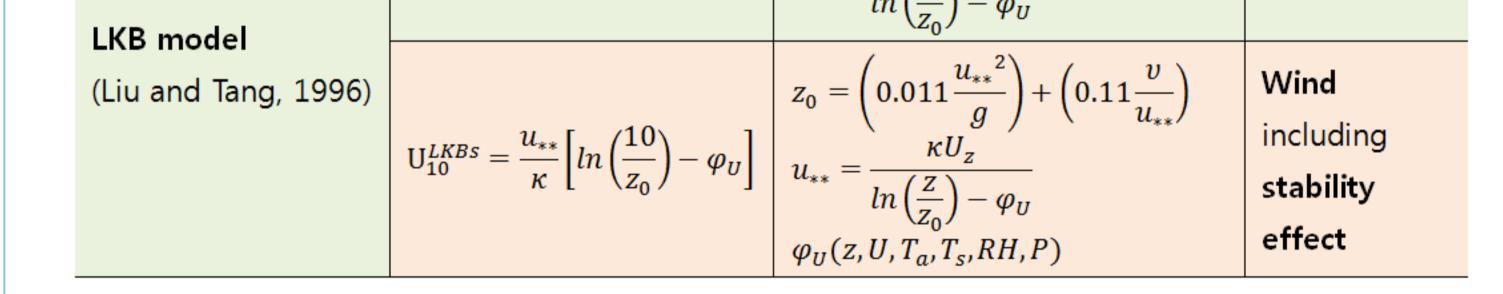



Figure 1. Location of the Ieodo Ocean **Research Station.**


Ocean Research Stations running by KHOA

The Ieodo, Shinan Gageocho and Ongjin Socheongcho Ocean Research Stations are located in the open seas including jurisdictional sea areas of Korea and are used to conduct oceanographic, meteorological and environmental observations.

Observation


Location	Sensor	Manufacturer	Used data	Table 1 Meteorelesiael
RD ①	Wind (MODEL 05106)	R.M. YOUNG		Table 1. Meteorological and oceanographic sensors
RD ②	Humidity & Temperature (HMP155)	VAISALA		installed at the Ieodo
RD ④	Barometer (PTB210B)	VAISALA	A-year-long (2015)	Ocean Research Station.
MD	Sea level height (Microwave radar)	RS Aqua	hourly records	
5 m				
below sea	Sea surface temperature (CT3919)	AANDERAA		
surface				

Methodology

- We have tested three well-known empirical neutral wind profile formulas and the logarithmic model with stability function to examine their applicability into 10-m reference level wind speeds.
- we also compared each wind speed data converted from the four neutral wind profile formulas with ASCAT (Advanced SCATterometer) data, which are proved by NASA (<u>http://podaac.jpl.nasa.gov/</u>).

Table 2. Wind profile formulas for adjusting sea winds measured at the Roof Deck (42.3 m) of the Ieodo Ocean Research Station to a 10-m reference height

Type (Ref.)	Formulas	Parameters	Note	
Power Law (Spera and Richards, 1979)	$U_{10}^{PW} = U_z \left(\frac{Z_{10}}{Z}\right)^p$	<i>p</i> = 0.11		
Logarithmic Profile (Large et al., 1995)	$U_{10}^{LV} = U_{Z} \left[\frac{1}{1 + \sqrt{C_{d10}^{V_{83}} / \kappa \ln\left(\frac{z}{z_{10}}\right)}} \right]$	$\begin{split} \kappa &= 0.4 \\ C_{d10}^{V83} &= 10^{-3} [2.717 U_{10} + \\ 0.142 (U_{10})^2 + 0.0764 (U_{10})^3 \end{split}$		
Logarithmic Profile (Smith, 1988)	$U_{10}^{SM} = \frac{u_*}{\kappa} \ln\left(\frac{10}{z_0}\right)$	$z_{0} = \left(0.011 \frac{{u_{*}}^{2}}{g}\right) + \left(0.11 \frac{v}{u_{*}}\right)$ $u_{*} = \frac{\kappa U_{z}}{\ln(z/z_{0})}$ $v = 1.5 \times 10^{-5} m^{2} s^{-1}$	Neutral wind	
	$U_{10}^{SM}(\nu(T)) = \frac{u_*}{\kappa} ln\left(\frac{10}{z_0}\right)$	$\nu(T) = 1.326e^{-5}(1 + 6.542e^{-5} + 8.301e^{-6}T^2 - 4.84e^{-9}T^3)$		
	$U_{10}^{LKBn} = \frac{u_{**}}{\kappa} \ln\left(\frac{10}{z_0}\right)$	$z_0 = \left(0.011 \frac{{u_{**}}^2}{g}\right) + \left(0.11 \frac{v}{u_{**}}\right)$ $u_{**} = \frac{\kappa U_z}{\ln\left(\frac{z}{z}\right) - \varphi_U}$		

Adjustment of Ieodo ORS wind speed data to a reference height

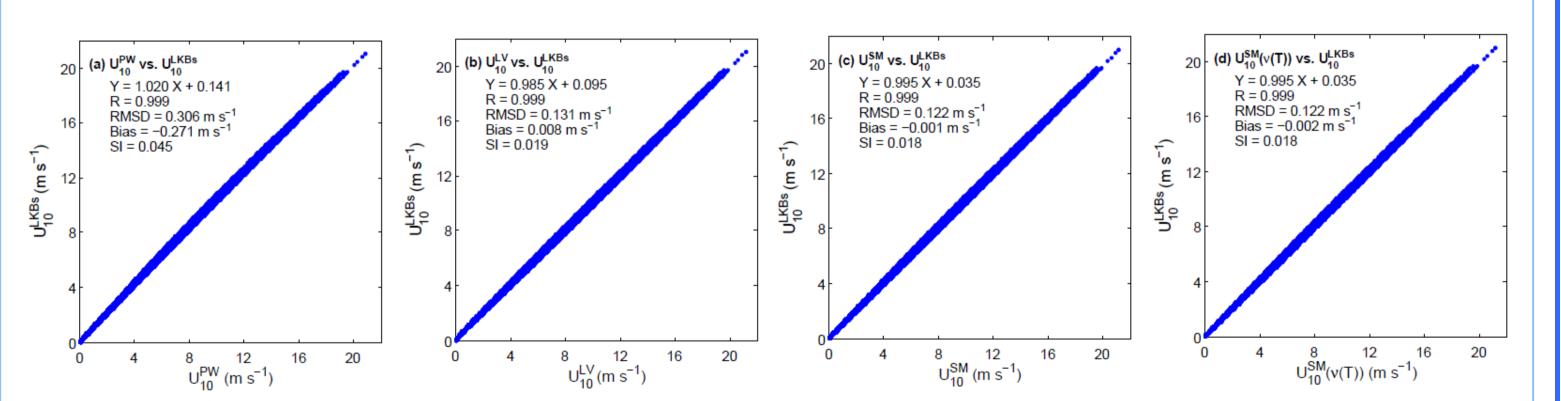


Figure 3. Comparisons between converted 10-m wind speed values from U_{10}^{LKBs} and converted values from each different formula, using 1-hr interval wind records observed at the Roof Deck on the Ieodo Ocean Research Station in 2015.

- Wind speed data adjusted from U_{10}^{SM} is the most similar to those of U_{10}^{LKBs} , showing the smallest values of RMSD, Bias and SI (Scatter Index), along with slope close to 1.
- Result of $U_{10}^{SM}(v(T))$ is very closed to that of U_{10}^{SM} , revealing that effect of variable v is insignificant.
- u_{10}^{PW} tends to slightly overestimate whereas u_{10}^{LV} and u_{10}^{SM} tend to slightly underestimate.

Comparisons between ASCAT and adjusted wind data sets

Estimation of surface roughness length (z_o) around leodo ORS

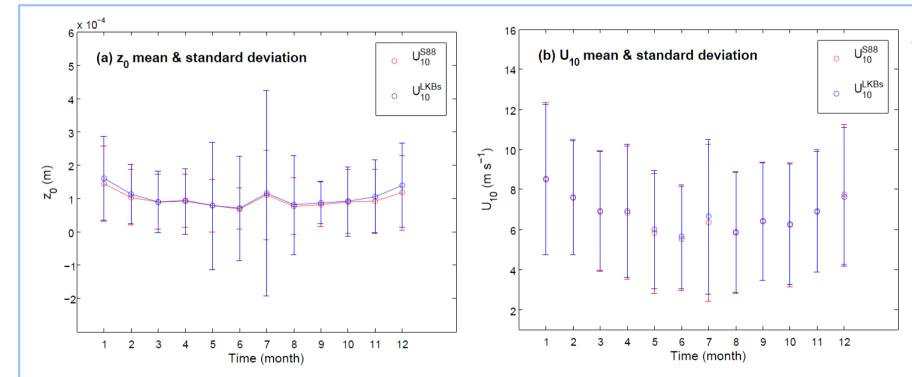


Figure 4. Monthly variabilities in mean and standard deviation of (a) surface roughness lengths (z_0) at the Ieodo Ocean Research Station and of (b) the wind speeds adjusted at 10-m, which were estimated from U_{10}^{SM} and U_{10}^{LKBs} .

 \blacktriangleright WMO (2008): 2×10⁻⁴ m for open sea > Oh et al. (2014): 5×10^{-4} m for Ieodo area

• Monthly mean surface roughness lengths from both U_{10}^{SM} and U_{10}^{LKBs} were ranged from 0.69×10⁻⁴ m to 1.6×10^{-4} m, showing that U_{10}^{LKBs} has relatively higher monthly variation in z_0 , compared to U_{10}^{SM} .

- 1-yr mean value of z_0 for each case is 0.96×10^{-4} m for U_{10}^{SM} and 10.2×10^{-5} m for U_{10}^{LKBs} , respectively.
- Wind speed adjusted from U_{10}^{LKBs} tends to be slightly smaller than that of U_{10}^{SM} .

Summary

• In terms of performance, u_{10}^{LKBs} is the best way to adjust wind speed at the Ieodo Ocean Research Station to a 10-m reference height but it requires several additional input data (air-temperature, airpressure, relative humidity and sea-surface temperature).

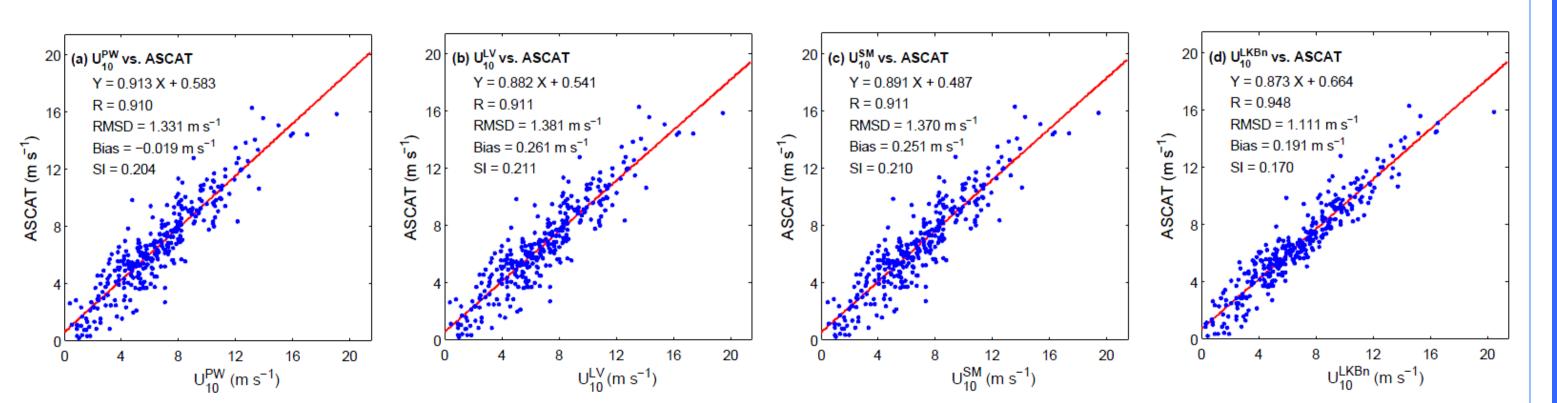


Figure 4. Comparisons between U_{10}^{ASCAT} and converted wind speed values from each different formula, using 1-hr interval wind records observed at the Roof Deck on the Ieodo Ocean Research Station in 2015.

• Wind speed data adjusted from u_{10}^{LKBn} is the most similar to those of ASCAT, showing the smallest values of RMSD, Bias and SI (Scatter Index), along with R value the nearest 1. • For slope of linear regression, U_{10}^{PW} was closest to 1 following U_{10}^{SM} , U_{10}^{LV} and U_{10}^{LKBn} . • Only U_{10}^{PW} has negative bias whereas the others have positive one. • Interestingly, U_{10}^{PW} showed the second best performance, following by U_{10}^{SM} and U_{10}^{LV} .

- For real-time operational use, we suggest that U_{10}^{SM} showing the second best performance should be used in a complementary way of U_{10}^{LKBs} .
- The value of z_0 calculated from U_{10}^{LKBs} and U_{10}^{SM} using the Ieodo ORS observation records can be used in a simple conventional wind-speed conversion formula on the Ieodo area:

, $z_0=1.02 \times 10^{-4}$ m around the Ieodo ORS

References

Liu, W.T. and W. Tang, 1996. Equivalent neutral wind. JPL Publication, Pasadena, CA, pp. 96-17. Oh, H., K.-J. Ha and J.-S. Shim, 2014. Analysis for onset of Changma using Ieodo Ocean Research Station Data. Atmosphere, Korean Meteorological Society, 24: 189-196. Smith, S.D. 1988. Coefficient for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research, 93: 15468-15472. Spera, D.A. and T.R. Richards, 1979. "Modified power low equations for vertical wind profiles," in Proceedings of the Conference and Workshop on Wind Energy Characteristics and Wind Energy Siting, Portland, Ore, USA, 19-21 June, 1979, pp. 1-10. WMO (World Meteorological Organization), 2008. Guidelines for converting between various wind averaging periods in tropical cyclone conditions. Appendix II, pp. 6-10.