

Oceanographic Modeling and Observation Network (REMO)

IMPACTS OF DIFFERENT STRATEGIES TO ASSIMILATE ARGO DATA INTO THE HYBRID COORDINATE OCEAN MODEL OVER THE SOUTH ATLANTIC

Filipe Costa and Clemente Tanajura

- Introduction
- Methods
- Results
- Conclusions

- Argo data can substantially impact model SSH due to its relationship with the subsurface thermohaline structure as well as the multivariate nature of assimilation techniques.
- Few works have showed this impact (Fu et al. 2011; Mignac et al.2015), but it doesn't compare with observations.
- Also, they don't show impacts that assimilation of ARGO can have on currents.
- Here we propose to investigate these impacts by assimilating Argo data into the HYbrid Coordinate Ocean Model (HYCOM).

Methods

• HYCOM 2.2.14

- 1/120 Horizontal Resolution
- 21 Layers
- CFSR
 - Ensemble Optimal Interpolation (EnOI)
 - 126 Ensemble Members

Methods

- Due to isopycnal nature of HYCOM -> two ways of assimilating Argo data (Xie and Zhu 2010).
 - Interpolate the observed data into the model vertical layers (ARGOdp) creating a synthetic DP.
 - Interpolate model variables from the model layer to z-coordinate to calculate the innovation (ARGOz).

 \longrightarrow X^a = X^f + K[Y - H(X^f)]

 \longrightarrow K = BH^T(HBH^T + R)⁻¹

 Four experiments (2008-2013) (a) Control, (b) ARGOdp, (c) ARGOz (d) ARGOzT. Evaluation -> 2010 - 2013

Methods

ARGOdp (ISOPYCNAL)

- Vertical localization of DP.
- Diagnoses T.
- Sequential assimilation.
- Assimlates T and S obs. and synthetic DP.
- S obs. are indinspensable.
- Low vertical resolution. (17 19 layers).
- High error for the synthetyc DP at layers >10.

ARGOz (Z Coordinates)

- No vertical localization.
- No diagnostic.
- Joint assimilation.
- Assimilates only T and S observations.
- High vertical resolution.
- If DP_{back} = 0 -> Analysis increment
 = 0.

Results: T RMSD PROFILE

ARGO RMSD 45S-10N 68W-18W (1/1/2010-31/12/2013 - TOT BUOYS 10138)

Results: T RMSD PROFILE

Results: STD DYNAMIC TOPOGRAPHY

Results: MEAN VELOCITY (0 - 100m)

Results: Reference

Rocha et al. 2014

Results: Velocity Section 28oS

COBSERVAD

REMO

- For temperature RMSD w.r.t. ARGO observations the experiment ARGOdp showed slightly better results for the first 300m, while ARGOz presented smaller error elsewhere.
- For salinity the experiment ARGOz had the smallest error along the whole profile and the ARGOzT still got some salinity correction, despite no salinity observations were assimilated.
- MDT and the STD of dynamic topography were better represented by the ARGOz experiment.
- ARGOdp smoothed the SSH gradient on the brazilian coast leading to a weak and poorly represented BC.
- ARGOzT showed similar results to ARGOz indicating that XBT, moored boyu data can be assimilated in the absence of salinity