Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References

Automated eddy detection in the Brazil Current near the Abrolhos Bank (17-21°S)

Gabriel Aarão Gonçalves¹ Leonardo Carvalho de Jesus¹ Julio Tomas Aquije Chacaltana¹

¹ Federal University of Espírito Santo, Brazil Technological Centre Department of Environmental Engineering

June 27, 2018

Introduction	Objective	Data	Methodology 000	Results and discussion	Conclusion	References
Table of	contents					

- 1 Introduction
- 2 Objective
- 3 Data
- 4 Methodology
 - Eddy detection method
 - Validation of the eddy detection method for the region of study
 - Eddy boundaries, radius and eddy tracking
- 5 Results and discussion
 - Validation of the automated eddy method
 - Eddy detection
 - Eddy radius
 - Eddy shapes
 - Eddy tracking
- 6 Conclusion

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Introduc	tion					

The Brazil Current (BC) is a western boundary current and it has origin in the South Equatorial Current (SEC) bifurcation, which is part of the South Atlantic subtropical gyre (Peterson and Stramma, 1991).

Figure 1: Schematic representation of the large scale in the South Atlantic Ocean. Source: Peterson and Stramma (1991)

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Introduc	tion					

- The (BC) in the ocean is characterized by a predominant pattern of meanders and eddies:
 - Cabo Frio region (Signorini, 1978; de Miranda and Castro, 1979);
 - Cape São Tomé (Garfield, 1990; Da Silveira et al., 2008);
 - Vitória (Schmid et al., 1995),
 - Abrolhos, Royal Charlotte and Ilhéus eddies (SOUTELINO, 2008)
- Important role in the transport of momentum and heat, as well in the occurence of upwelling events (McWilliams, 2008).

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Introduc	tion					

- The application of an automated eddy detection method can be useful, especially for the study of eddies from a large dataset.
- Automated eddy detection can be divided in three different categories:

Categories of automated eddy detection

- 1. Based on physical parameters;
- 2. Based on the geometry of the flow;
- 3. Hybrid: association of both categories (physical and geometric)
- In principle, the geometric category is better than the physical criteria, because they are based on the properties of a whole region, such as streamlines Sadarjoen (1999) and the physical criteria usually detect eddies that do not correspond to true eddies (Sadarjoen, 1999; Chaigneau et al., 2008).
- Hybrid category: The work of (Chaigneau et al., 2008) used a geometric technique for the delimitation of eddy boundary and a physical criteria for the eddy detection.

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Objective						

Apply a geometric eddy detection method for evaluate the eddy characteristics near the Abrolhos Bank.

Introduction	Objective	Data	Methodology 000	Results and discussion	Conclusion	References
Data						

Reanalysis dataset of the consortium HYCOM (HYbrid Coordinate Ocean Model) during 2010.

Table 1: Specifications of the HYCOM dataset

Data	Specifications
Spatial resolution	1/12.5°
Time intervals	1 day
Latitude	$(13-21^{\circ}S)^{1}$ and $(17-21^{\circ}S)^{2}$
Longitude	(35-41°W)
Variables	Zonal and meridional component of velocity

¹ Coordinates used for validation of the eddy detection method;

² Coordinates of the region of study.

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Region	of studv					

Figure 2: (Left): region of study (blue). (Right): bathymetry of the region of study, indicating the Abrolhos Bank

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion Refere		

Eddy detection method

- Automated eddy detection developed by (Nencioli et al., 2010)
- Eddy centers are determined when 4 constraints are satisfied (Figure 3):
 - Along an east-west section, v has to reverse in sign across the eddy center and its magnitude has to increase away from it;
 - 2. The same for *u* in north-south section;
 - Velocity magnitude has a local minimum at the eddy center;
 - The directions of the velocity vectors have to change with a constant sense of rotation and the directions of two neighboring velocity vectors have to lay within the same or two adjacent quadrants;
- The constraints depend on two parameters (a and b), that give flexibility to the algorithm:
 - In our study: a = 3 and b = 2

Figure 3: (a) First, (b) second, (c) third, and (d) fourth constraint. Source: Nencioli et al. (2010)

Introduction Objective Data Methodology Results and discussion Conclusion References

Validation of the automated eddy method

Efficiency was validated by two parameters Chaigneau et al. (2008):

$$SDR = \frac{N_c}{N_e}$$
(1)

$$\mathsf{EDR} = \frac{N_{om}}{N_e} \tag{2}$$

- N_c: common eddies identified by both the authors and the automated method;
- N_e: total number of eddies identified by the authors;
- Nom: eddies identified only by the method.
- 10 days of the dataset were aleatory selected, as well different depths were choosed (between 0 and 400 m).

Introduction Objective Data Methodology Results and discussion Conclusion References

- Eddy boundary: defined as the outermost closed streamline around the eddy center, different from the definition of Nencioli et al. (2010). The definition used in our work was also used by Xia and Shen (2015).
 - In cases eddies centers have no closed contours of streamfunction, the eddy shape is assumed to be circular with radius a - 1 grid points (16.5 km) in our data.
- Eddy radius: computed as the mean distance between the center of the eddy and all the points defining the contourline adopted as eddy limit.
- Eddy tracking: determined comparing the centers at successive time steps, starting from the first day, using a searching area with radius of 25 km.
 - The number of eddy centers found is the eddy lifetime (days).

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References				
Validatio	Validation of the automated eddy detection for the region of study									

Table 2: Validation of the automated eddy detection for the region of study

Day	88344	90912	93336	96504	97704	100272	102360	106632	107016	107304	Total
Depth (m)	400	0	0	50	20	150	200	0	0	0	-
Ne	11	7	6	9	8	9	10	4	5	3	72
Nc	9	7	6	9	7	9	10	3	5	2	67
Nom	0	0	0	0	0	0	0	0	0	1	1
Missing eddies	2	0	0	0	1	0	0	1	0	1	5
SDR (%)	81.82	100	100	100	87.50	100	100	75	100	66.67	91.10
EDR (%)	0	0	0	0	0	0	0	0	0	33.33	3.33

Results of the average SDR and EDR in this work very similar as the obtained by Nencioli et al. (2010) (SDR = 92.9%; EDR = 2.9%)

Introduction	Objective	Data	Methodology 000	Results and discussion	Conclusion	References
Eddy de	tection					

Decrease of the total number of eddies detected with increasing depth.

Table 3: Total eddies detected (cyclonic and anticyclonic) for different ocean depths for 2010

Year 2010									
Depth (m)	Total eddies	Cyclonic eddies	Anticyclonic eddies						
20	1254	591	663						
100	1211	645	566						
250	1113	684	429						
500	1027	698	329						

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy de	etection					

Figure 5: Anual cycle of the number of eddies detected in the Abrolhos region: 100 m

Month of the year

More cyclonic eddies than anticyclonic.

Figure 7: Anual cycle of the number of eddies detected in the Abrolhos region: 500 m

Introduction	Objective	Data	Methodology 000	Results and discussion	Conclusion	References
Eddy de	tection					

Table 4: Mean coordinates of the VE, AE cyclonic and AE anticyclonic

Eddies	VE	AE cyclonic	AE anticyclonic
Latitude (°S)	-20.4	-18.5	-18.9
Longitude (°W)	-39.0	-37.2	-36.2

AE anticyclonic coordiantes obtained by SOUTELINO (2008):

Latitude ($^{\circ}$ S) = 19.0 Longitude ($^{\circ}$ W) = 36.5

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy ra	dius					

Table 5: Eddy radius for different depths

Summer 2010									
Depth (m)	Radius (km)								
	VE	AE cyclonic	AE anticyclonic						
20	19.8	16.7	16.7						
100	40.4	35.6	16.7						
250	39.9	37.9	ND						
500	28.4	16.7	ND						

Table 6: Eddy radius for different depths

Autumn 2010								
Depth (m)		Radius ((km)					
	VE	AE cyclonic	AE anticyclonic					
20	ND	16.7	67.9					
100	ND	16.5	62.0					
250	ND	16.6	54.7					
500	28.4	16.8	70.1					

¹ ND: eddy not detected

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy st	nanes					

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy st	nanes					

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy sł	nanes					

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy sh	apes					

June 27, 2018 23 / 30

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy sh	apes					

Introduction	Objective	Data	Methodology 000	Results and discussion	Conclusion	References
Eddy sh	apes					

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy tra	acking					

Table 7: Number of eddies tracked and its mean lifetime, for different depths: year 2010

Year 2010						
Depth (m)	Number of eddies tracked	Mean lifetime (days)				
20	277	4				
100	279	4				
250	200	6				
500	165	7				

An increase in the mean lifetime with increasing depth.

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Eddy tra	acking					

Introduction	Objective	Data	Methodology	Results and discussion	Conclusion	References
Conclusi	ion					

- The automated eddy detection based on the geometry of the flow proposed by Nencioli et al. (2010) was applied near the region of the Abrolhos Bank;
- In 250 and 500m depth, it was found the presence of more cyclonic eddies than anticyclonic.
- It was noted the increase in lifetime with increasing depth. This can be related with more EKE available in these depths (Xia and Shen, 2015).
- In our study domain, three main eddies were detected: the VE, the AE anticyclonic and the AE cyclonic.
- The summer of 2010 was the season with the VE and the AE cyclonic more defined as a eddy structure. The AE anticyclonic showed a weak structure in this season. However, the inverse occured in the autumn, with AE anticyclonic reaching radius betweeen 55 and 70 km and VE and AE cyclonic weaker.
- In summer, the VE and the AE cyclonic moved further east and south, respectively. In autumn, the AE anticyclonic moved further west.

Introduction	Objective	Data	Methodology 000	Results and discussion	Conclusion	References
Referenc	es l					

- Chaigneau, A., Gizolme, A., Grados, C., et al. (2008). Mesoscale eddies off peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. *Progress in Oceanography*, 79(2):106 119.
- Da Silveira, I., Lima, J., Schmidt, A., Ceccopieri, W., Sartori, A., Franscisco, C., and Fontes, R. (2008). Is the meander growth in the Brazil Current system off Southeast Brazil due to baroclinic instability? *Dynamics of Atmospheres and Oceans*, 45(3):187–207.
- de Miranda, L. B. and Castro, B. (1979). Condições do movimento geostrófico das águas adjacentes a Cabo Frio (RJ). Boletim do Instituto Oceanográfico, 28(2):79–93.
- Garfield, N. (1990). The Brazil Current at subtropical latitudes. PhD thesis, University of Rhode Island.
- McWilliams, J. C. (2008). The nature and consequences of oceanic eddies. *Ocean Modeling in an Eddying Regime*, pages 5–15.
- Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C. (2010). A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern california bight. *Journal of Atmospheric and Oceanic Technology*, 27(3):564– 579.
- Peterson, R. G. and Stramma, L. (1991). Upper-level circulation in the south atlantic ocean. Progress in oceanography, 26(1):1–73.
- Sadarjoen, I. A. (1999). Extraction and visualization of geometries in fluid flow fields. PhD thesis, TU Delft, Delft University of Technology.
- Schmid, C., Schäfer, H., Zenk, W., and Podestá, G. (1995). The Vitória eddy and its relation to the Brazil Current. Journal of physical oceanography, 25(11):2532–2546.
- Signorini, S. R. (1978). On the circulation and the volume transport of the Brazil Current between the Cape of São Tomé and Guanabara Bay. *Deep Sea Research*, 25(5):481–490.
- Soutelino, R., Gangopadhyay, A., and da Silveira, I. (2013). The roles of vertical shear and topography on the eddy formation near the site of origin of the brazil current. *Continental Shelf Research*, 70:46–60.
- SOUTELINO, R. G. (2008). A origem da Corrente do Brasil. Master's thesis, Instituto Oceanográfico, Universidade de São Paulo.
- Xia, Q. and Shen, H. (2015). Automatic detection of oceanic mesoscale eddies in the south china sea. Chinese despirito Santo Journal of Oceanology and Limnology, 33(5):1334–1348.

Thank you!