

Pedro Veras Guimarães, Charles Peureux, Fabrice Ardhuin, Yves Pérignon, Fabien Leckler and Alvise Benetazzo

Why do waves break?

Breaking results from an instability that develops near the wave crest when the orbital velocity approaches the phase speed.

• This criterion gives a maximum possible wave steepness that is:

 $H_{max}/L \simeq 0.14 \tanh(kd)$

Miche (1944)

Stringari (2018), PyWaveLearn: Machine learn for wave

science

Wave breaking in deep water

< □ ▶ < @ ▶ < \ = ▶ < \ = ♪ < \ = ♪ < \ 20

Wave-by-wave Vs. Statical approach

Banner et al. (2000)

Dissipation is a quase-linear function of the saturation of the spectrum.

$$S_{dis}(k) = \sigma \frac{C_{ds}}{B_r} \left[\delta_d \max\{B(k) - B_r, 0\}^2 \right] N(k)$$

Phillips (1958,1985)

link between wave breaking and spectrum shape. Breaking probability is a function of 'saturation spectrum'

$$B(f) = \frac{(2\pi)^4}{g^2} f^5 E(f)$$

Time-history of short waves on uniform train of long waves (Longuet-Higgins, 1991). The dash line indicate the interval where the short waves are breaking. (a) $\Omega < 1$, (b) $\Omega \ge 1$

$$\Omega = \frac{(\beta/\sigma)}{\gamma KA}$$

Keller and Wright (1975) introduced the idea of modulation transfer function (MTF), to define how much dominant waves can modulate SWs

$$M_{Y} = \frac{\overline{Y}}{A_{l}k_{l}\overline{Y}}$$

INTRODUCTION BACKGROUND

OBSERVATIONS 0000000 NUMERICAL MODELLING

CONCLUSIONS

2. BACKGROUND

Modulation of the wave action

$$\begin{split} N &= \overline{N} + \delta N \\ \delta N &= N' = \overline{N} \sum_{k_l} M_N(k_l) k_l A_l e^{i(k_l \cdot x - \omega_l t)} \end{split}$$

Longuet-Higgins and Stewart (1960) and Phillips (1977)

$$N, k \longrightarrow \begin{cases} \partial_t N' + \partial_x \left[\left(\frac{c'}{2} + U_l \right) N' \right] = 0 \\ \partial_t k' + \partial_x \left[\left(c' + U_l \right) k' \right] = 0 \\ c' = \sqrt{\frac{g}{k'}} \\ B & B' \end{cases}$$

$$B(k) = k^{3}E(k)/\omega \quad B' = \overline{B}(1 + \varepsilon M_{B}\cos\phi)$$

 ε is the LW steepness ($k_l A_l$) and $\phi = \theta_s - \theta_l$

First order MTF

Longuet-Higgins and Stewart (1960)

$$M_B = 4$$

Elfouhaily et al. (2001)

$$M_N = -4rac{\omega_1 - i\mu_s}{\omega_1^2 + \mu_s^2}\omega_l\cos^2(heta_s - heta_1)$$

• To improve the saturation-based dissipation by taking into account longuer waves modulations effect.

• To improve the saturation-based dissipation by taking into account longuer waves modulations effect.

- Short wave breaking modulation by longer waves observed by stereo video system
- Maximum saturation level instead of the mean saturation in WW3 model

a) Research platform of the Marine Hydrophysical Institute; b) Position of the research platform; c) WASS cameras in the center and DIACAM. BACKGROUND

INTRODUCTION

OBSERVATIONS 000000 NUMERICAL MODELLING

CONCLUSIONS 0000

3. Observations

(a) $E(k_x, k_y, f)$

Sea surface elevation and wave spectrum from stereo video.

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 - つへで 12/20

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 少 4 で 13/20

WAVEWATCH[®] III numerical model

$$\partial_t N + \boldsymbol{\nabla} \cdot (\dot{\boldsymbol{x}}N) + \boldsymbol{\nabla}_{\boldsymbol{\kappa}} \cdot (\dot{\boldsymbol{\kappa}}N) = S$$

$$S(\boldsymbol{\kappa}) = S_{in} + S_{ds} + S_{nl} + \dots$$

 S_{in} and S_{ds} Ardhuin et al. (2010), S_{nl} Webb-Resio-Tracy (WRT), Hasselmann (1962, 1963a,b)

 S_{ds} : Breaking probability is based on a threshold on the saturation of the spectrum (B)

$$B(k,\theta) \rightarrow \boxed{B(k,\theta)[1 + 2M_B\sqrt{mss_l(k,\theta)}]}$$
$$mss_l(k,\theta) = \cos^2(\theta - \theta_l) \int_0^{k/2} k^2 E(k) dk$$

Simplified test case

Homogeneous test case of WW3, with 128 freq and 72 directions, 0.04 < f < 1.9 Hz, U10 = 12m/s

• In this work we explored observational and numerical aspects of short wave dynamic and dissipation.

- Stereo video observations and breaking detection
- Short wave breaking modulation by longer waves

• We propose an extension to the saturation-based dissipation

 $B(k,\theta) \rightarrow$

 $B(k,\theta)[1+2M_B\sqrt{mss_l(k,\theta)}]$

- The results are more consistent with strong bimodality when wind and dominant waves are aligned
- and can also produce the observed f⁵E(f) spectral shapes

- Obtain a more correct *M*_B
- Phase-resolving simulations using a HOS (Ducrozet et all, 2016)
- Test the source therms on realistic cases

Thank you!

<ロ > < 回 > < 画 > < 三 > < 三 > 三 の < で 20/20