Capítulo 4

Equação da difusão

Nesse capítulo, será apresentada a resolução numérica da equação da difusão através de diferenças finitas.

1. Equação da difusão e fluxo em escala subgrade

A equação da difusão pode ser expressa como o produto de um "coeficiente de troca" e do gradiente de uma variável dependente apropriada. Essa relação pode ser escrita como:

$$\frac{\partial \overline{\phi}}{\partial t} = \frac{\partial}{\partial z} K \frac{\partial \overline{\phi}}{\partial z} \approx \frac{\phi_i^{\tau+1} - \phi_i^{\tau}}{\Delta t} = K_{i+\frac{1}{2}} \frac{\phi_{i+1}^{\tau} - \phi_i^{\tau}}{(\Delta z)^2} - K_{i-\frac{1}{2}} \frac{\phi_i^{\tau} - \phi_{i-1}^{\tau}}{(\Delta z)^2}$$
(4.1)

onde $\Delta z = z(i+1) - z(i) = z(i) - z(i-1)$ e $\overline{\phi}$ representam qualquer uma das variáveis dependentes.

Para estudar a estabilidade linear deste esquema, o "coeficiente de troca" é assumido constante ($K_{i+1/2} = K_{i-1/2} = K$), e (4.1) é escrita como:

$$\phi_{i}^{\tau+1} = \phi_{i}^{\tau} + K \frac{\Delta t}{\left(\Delta z\right)^{2}} \left(\phi_{i+1}^{\tau} - 2\phi_{i}^{\tau} + \phi_{i-1}^{\tau}\right)$$
(4.2)

A solução exata da equação de difusão (o lado esquerdo de 4.1) com o K igual a uma constante, i.e., $\frac{\partial \overline{\phi}}{\partial t} = K \frac{\partial^2 \phi}{\partial z^2}$ pode ser determinado se for assumido

$$\overline{\phi} = \phi_0 e^{i(kz - \omega t)} = \phi_0 e^{-\overline{\omega}_i t} e^{i(k_r z + \omega_r t)}$$

onde não é permitido amortecimento na direção z (i.e., $k_i \equiv 0$). Substituindo esta expressão dentro da equação de difusão linearizada e simplificando, têm-se:

$$i \omega_r - \omega_i = -K k^2$$

sendo que, o subscrito r em k do ser eliminado para simplificar a notação. Igualando a parte real e imaginária, têm-se que $\omega_r \equiv 0$, de modo que a solução exata pode ser escrita como:

$$\overline{\phi} = \phi_0 e^{-Kk^2t} e^{ikz}$$

Expressando as variáveis dependentes como função da freqüência e do número de onda, (4.2) pode ser rescrita como:

$$Ψ^{1}=1+γ(Ψ_{1}-2+Ψ_{-1})=1+2γ(cos (k) Δz -1)$$

onde $\gamma = K \Delta t / (\Delta z)^2$ e $\Psi_1 + \Psi_{-1} = 2 \cos(k) \Delta z$. O parâmetro γ não-dimensional é chamado número do Fourier. Igualando a parte real e imaginária têm-se:

$$\begin{split} \lambda \cos(\omega_r) \Delta t &= 1 + 2\lambda (\cos{(k)} \Delta z - 1), \\ \lambda \sin(\omega_r) \Delta t &= 0 \end{split}$$

Desde que, $sen(\omega_r)\Delta t$ pode ser identicamente igual a zero, $\omega_r\Delta t$ e, deste modo a velocidade de fase também são iguais a zero. Deste modo, a solução para 4.2 não se propaga como onda, mas pode amplificar ou decair no local. Desde que, $cos(\omega_r)\Delta t=1$, a

parte real pode ser dividida em solução analítica, $\lambda_a = e^{-Kk^2\Delta t} = e^{-\frac{\gamma(2\pi)^2}{n^2}}$ e rescrita como:

$$\frac{\lambda}{\lambda_{a}} = \frac{1 + 2\gamma(\cos k\Delta z - 1)}{e^{-\frac{\gamma(2\pi)^{2}}{n^{2}}}}$$

sendo n o número de pontos de grade por comprimento de onda. Para ondas muito longas $\lambda_a = 1 \ e \ \lambda = 1 \ (n \to \infty)$, desde que $\cos(k)\Delta z = \cos(2\pi/2)\Delta z = 1$, e, portanto, nenhum amortecimento ou amplificação ocorre. Para ondas mais curtas, que podem ser resolvidas (L = $2\Delta z$; n = 2),

$$\lambda = 1 - 4 \gamma$$
.

Para assegurar que a grandeza de λ é menor que unidade e, portanto, computacionalmente estável, 4 γ deve ser menor ou igual a 2 ou

$$\gamma \leq 1/2$$

A condição $\gamma = 1/2$, todavia, causas mudanças no λ entre +1 e -1 para cada aplicação de (4.2), mas a solução analítica é $\lambda_a = e^{-9.9} = 0.00005$. Esta resposta não realista de aspectos de comprimento de onda $2\Delta z$ podem causar problemas computacionais em modelos não-

lineares. Para eliminar ondas de comprimento 2 Δz de cada aplicação de (4.2), λ pode ser definido como zero para cada onda 2 Δz resultante em $\lambda=1/4$. Deste modo, a padronização requerida nesse esquema é

$$\gamma = K \, \Delta t / (\Delta x)^2 \le 1/4$$

com a expectativa que $\gamma = \frac{1}{4}$ minimize a presença de ondas 2 Δz .

Até este ponto, a aproximação dos termos advectivos e de fluxos de escala subgrade têm sempre sido definidos no passo de tempo corrente (i.e., ϕ_i^{τ}). A variável dependente prevista $\phi_i^{\tau+1}$ somente entra no termo de tendência. Tais esquemas são referidos como explícitos e podem ser escritos, em geral como:

$$\phi^{\tau+1} = f(\phi)^{\tau}$$

onde a função f, pode incluir derivadas espaciais de ϕ^{τ} , assim como a sua própria variação. O (~)indica que $\phi^{\tau + 1}$ foi especificado em um ponto, e pode ser dependente de valores de ϕ^{τ} em outros pontos de grade.

Em contraste, um esquema implícito usa informação do passo do tempo de futuro, assim como valores presentes. Para este caso

$$\phi^{\tau+1} = f\left(\underset{\widetilde{\bullet}}{\phi}^{\tau+1}, \underset{\widetilde{\bullet}}{\phi}^{\tau} \right)$$

Em general o uso de uma representação implícita permite maiores passos de tempo que a forma explícita, sem causar instabilidade linear. Uma forma implícita do lado esquerdo da equação (4.1) para a variável Δz pode ser escrita como (e.g., Paegle et al., 1976):

$$\frac{\phi^{\tau+1} - \phi^{\tau}}{\Delta t} = \frac{1}{\Delta z_{j}} \begin{bmatrix} K_{j+\frac{1}{2}} \frac{\beta_{\tau} (\phi^{\tau}_{j+1} - \phi^{\tau}_{j}) + \beta_{\tau+1} (\phi^{\tau+1}_{j+1} - \phi^{\tau+1}_{j})}{\Delta z_{j+\frac{1}{2}}} \\ - K_{j-\frac{1}{2}} \frac{\beta_{\tau} (\phi^{\tau}_{j} - \phi^{\tau}_{j-1}) + \beta_{\tau+1} (\phi^{\tau+1}_{j} - \phi^{\tau+1}_{j-1})}{\Delta z_{j-\frac{1}{2}}} \end{bmatrix}$$
(4.3)

sendo $\beta_{\tau} + \beta_{\tau+1} = 1$, $\Delta z_{j} = z_{j+1/2} - z_{j-1/2}$, $\Delta z_{j+1} = z_{j+1} - z_{j} e \Delta z_{j-1} = z_{j} - z_{j-1}$. Nota-se que quando $\beta_{\tau+1} = 0 e \Delta z_{j+1} = \Delta z_{j-1} = \Delta z$, o esquema retorna para o esquema explícito dado pelo lado direito de (4.1). Lineariza-se (4.3) fazendo K_{j+1/2} e K_{j-1/2} iguais a uma constante,

usando uma grade constante de intervalo Δz , e representando a variável dependente em termos de número de onda e freqüência resultando em:

$$\psi^{1} = 1 + \gamma \Big[\beta_{\tau} \big(\psi_{1} - 2 + \psi_{-1} \big) + \beta_{\tau+1} \big(\psi_{1}^{1} - 2\psi^{1} + \psi_{-1}^{1} \big) \Big]$$

sendo que, com o esquema explícito, $\gamma = K \Delta t / (\Delta z)^2$. Desde que:

$$\begin{split} \psi_{1}^{1} &= \psi^{1}\psi_{1}, \ e \ \psi_{-1}^{1} = \psi^{1}\psi_{-1} \\ \psi^{1} &= 1 + \gamma\beta_{\tau} \Big[(\psi_{1} - 2 + \psi_{-1}) + \gamma\beta_{\tau+1}\psi^{1} (\psi_{1} - 2 + \psi_{-1}) \Big] \end{split}$$

ou

$$\Psi^{1} = \frac{1 + \gamma \beta_{\tau} [(\Psi_{1} - \Psi_{-1} - 2)]}{1 - \gamma \beta_{\tau+1} [(\Psi_{1} - \Psi_{-1} - 2)]} = \frac{1 + 2\gamma \beta_{\tau} (\cos k\Delta z - 1)}{1 - 2\gamma \beta_{\tau+1} (\cos k\Delta z - 1)}$$

Valores da razão de aproximação computacional pelo amortecimento analítico λ/λ_a são apresentados na tabela 4.1 como uma função do comprimento de onda e β_{τ} . As soluções tornam-se mais precisas quando γ torna-se menor, e a representação implícita dá resultados razoáveis para grandes comprimentos de onda, até mesmo quando a forma explícita é linearmente instável para todas as escalas espaciais.

Esquema	Comprimento	γ										
	de onda											
adiantado no tempo		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	
centrado no espaço												
Explícito	$2 \Delta z$	1.610	1.440	-3.863	-31.094	<-100						
$\beta_{\tau} = 1$	$4 \Delta z$	1.024	0.983	0.839	0.537	0.0		$\lambda > 1$ para ondas 2 Δx				
	$10 \Delta z$	1.001	0.999	0.997	0.992	0.986						
	$20 \Delta z$	1.000	1.000	1.000	1.000	0.999)					
Implícito	$2 \Delta z$	1.725	2.554	2.272	-4.202	-34.761	<-100	<-100	<-100	<-100	<-100	
$\beta_{\tau}=0.7$	$4 \Delta z$	1.038	1.053	1.030	0.952	0.792	0.517	0.079	-0.584	-1.555	-2.948	
	$10 \Delta z$	1.001	1.001	1.001	1.000	0.998	0.996	0.992	0.988	0.982	0.975	
	$20 \Delta z$	1.000	1,000	1.000	1.000	1.000	1.000	1.000	0.999	0.999	0.999	
$\beta_{\tau}=0.5$	2 Δ z	1.789	3.085	4.829	5.758	0.00	-33.91	<-100	<-100	<-100	<-100	
	$4 \Delta z$	1.047	1.092	1.129	1.150	1.145	1.099	0.993	0.800	0.485	1.008	
	$10 \Delta z$	1.001	1.003	1.004	1.005	1.006	1.007	1.007	1.008	1.008	1.001	
	$20 \Delta z$	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.001	1.001	1.001	
β _τ =0.3	$2 \Delta z$	1.845	3.507	6.718	12.711	23.17	38.97	54.11	33.16	<100	<100	
	$4 \Delta z$	1.055	1.126	1.211	1.307	1.414	1.529	1.648	1.766	1.875	1.965	
	$10 \Delta z$	1.002	1.004	1.006	1.009	1.013	1.017	1.021	1.026	1.031	1.037	
	$20 \Delta z$	1.000	1.000	1.000	1.001	1.001	1.001	1.001	1.002	1.002	1.003	
$\beta_{\tau}=0.1$	$2 \Delta z$	1.916	3.999	8.779	19.93	46.35	>100	>100	>100	>100	>100	
	$4 \Delta z$	1.067	1.170	1.310	1.491	1.717	1.998	2.344	2.769	3.290	3.931	
	$10 \Delta z$	1.002	1.005	1.010	1.016	1.023	1.031	1.040	1.050	1.062	1.074	
	$20 \Delta z$	1.000	1.000	1.001	1.001	1.002	1.002	1.003	1.004	1.004	1.005	

 Tabela 4.1 : valores da razão computacional do amortecimento analítico em função do comprimento de onda para diferentes formas de aproximação adiantado no tempo e centrada no espaço, para a equação de difusão.

Referências:

Paegle, J., Zdunkowski, W. G. and Welch, R. M. ,1976: Implicit differencing of predictive equations of the boudary layer. Mon. Weather Review. 104, 1321-1324.

Pielke, R. A., 1984: Mesoscale Meteorological Modeling. Academic Press, 612p.